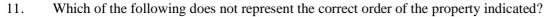


Max Marks: 540 Date: 21.08.2022

NEET 24 MR BATCH CHEMISTRY: PART TEST Tonic: Pariodic + Mole Concept

			,	CHEMIST Topic: Perio									
1.	The s	creening effect of	of d-electror	ns is									
	(a)	Equal to that	of p-electro	ns	(b)	More than the	at of p-electron	ns					
	(c)	Less than p-e	lectrons		(d)	Same as f-ele	ectrons						
2.	Selec	t correct stateme	ent(s)										
	(a)	Across a trans	sition series	(from Cr to Cu), there is only	a small change	e in atomic rad	lius from one o	element				
		to another due	e to very sm	all change in ef	fective nuclea	r charge.							
	(b)	The rate of de	The rate of decrease in the size across the lanthanide series is less than the across the first transition series.										
	(c)	Both are corre	ect statemer	nts.									
	(d)	None of the s	tatement is	correct.									
3.	Chlo	Chloride ion and potassium ion are isoelectronic. Then											
	(a)	their sizes are	same		(b)	Cl ⁻ ion is big	ger than K+ io	n					
	(c)	K ⁺ ion is relat	ively bigger	r	(d)	their sizes depend on other cation and anion.			on.				
4.	The 2	X-X bond length	is 1.00 Å a	and C –C bond	length is 1.54	Å. If electroneg	gativities of 'X	and 'C' are	3.0 and				
	2.0 re	espectively, the C	C-X bond le	ngth is likely to	be:								
	(a)	1.27Å	(b)	1.18Å	(c)	1.08Å	(d)	1.28Å					
5.	Whic	h of the followin	ng involves	maximum amou	int of energy?	•							
	(a)	$Mg^{\scriptscriptstyle -}(g)\to Mg(g)$				$Mg^{2+}(g) \rightarrow M$	$Mg^{3+}(g)$						
	(c)	$Mg^{-}(g) \rightarrow M$	$(g^{+}(g))$		(d)	$Mg^+(g) \rightarrow N$	$\lg^{3+}(g)$						



Which of the following is the correct order of ionisation enthalpy?

6.

	(1)	$Be^+ > 1$	Be	(2)	$Be > Be^+$	(3)	C > Be	(4)	B > Be			
	(a)	2,3		(b)	3,4	(c)	1,3	(d)	1,4			
7.	Succes	sive ion	isation ener	gies of a	an element 'X' are giv	en belov	w (in kcal):					
	\mathbf{IP}_1	IP_2	IP_3	IP_4								
	165	195	556	595								
	Electro	nic con	figuration of	f the ele	ment 'X' is:							
	(a)	$1s^2$, $2s$	$^{2}2P^{6}$, $3s^{2}3p^{2}$	(b)	$1s^2, 2s^1$	(c)	$1s^2$, $2s^22P^2$	(d)	$1s^2$, $2s^22P^6$, $3s^2$			
8.	Which	is/are tr	ue statemen	t (s)?								
	(a)	Larger	is the value	of ionis	sation enthalpy, easier	r is the f	ormation of cation.					
	(b)	Larger	is the value	of elect	tron gain enthalpy, ea	sier is th	e formation of anion.					
	(c) Larger is the value of ionisation energy as well as electron affinity, smaller is the Mulliker electronegativity of atom.											
	(d)	Larger	is Z _{eff} , large	er is the	size of atom.							
9.	$(A) M^{-}(g) \to M(g)$											
	$(B) M(g) \to M^+(g)$											
	(C) M ⁺	$(g) \rightarrow N$	$M^{+2}(g)$									
	(D) M	$+2(g) \rightarrow 1$	$M^{+3}(g)$									
	Minim	um and	maximum e	nergy w	vill be absorbed by the	e process	ses					
	(a)	A,D		(b)	В,С	(c)	C,D	(d)	А,В			
10.	Among	g the fol	lowing oxoa	cids, the	e correct decreasing of	order of a	acid strength is:					
	(a)	HClO ₄	> HClO ₃ > I	$HClO_2 >$	HOCl							
	(b)	HClO ₂	$_2 > \text{HClO}_4 >$	HClO ₃	> HOCl							
	(c)	HOCl	> HClO ₂ $>$ I	$HClO_3 >$	· HClO ₄							
	(d)	HClO ₄	+> HOCl > I	HClO ₂ >	HClO ₃							

- (a) $Mn^{2+} > Ni^{2+} < Co^{2+} < Fe^{2+}$; ionic radii
- (b) Sc < Ti < Cr < Mn : Density
- (c) $Sc^{3+} > Cr^{3+} < Fe^{3+} < Mn^{3+}$: ionic radii
- (d) FeO < CaO > MnO < CuO : Basic nature

12. Which of the following is weakest basic oxide?

- (a) Fe_2O_3
- (b) FeO
- (c) BaO
- (d) Na₂O

13. Choose incorrect statement

- (a) reducing power in aqueous solution is maximum for lithium metal
- (b) electron affinity order $O^+ > O > O_2^{2-} > O^{-2}$
- (c) order of oxidation number of oxygen

$$O_3 > KO_2 > BaO_2 > K_2O$$

(d) pH of aqueous solution

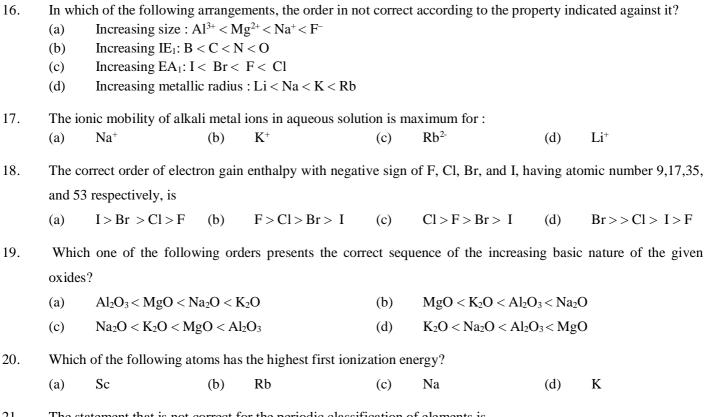
$$LiCl > BeCl_2 > MgCl_2 < AlCl_3$$

14. Which set represents isoelectronic species?

- (a) Be, Al^{3+} , Cl^{-}
- (b) Ca^{2+} , Cs^{+} , Br
- (c) Na^+, Ca^{2+}, Mg^{2+}
- (d) N^{3-} , F^{-} , Na^{+}

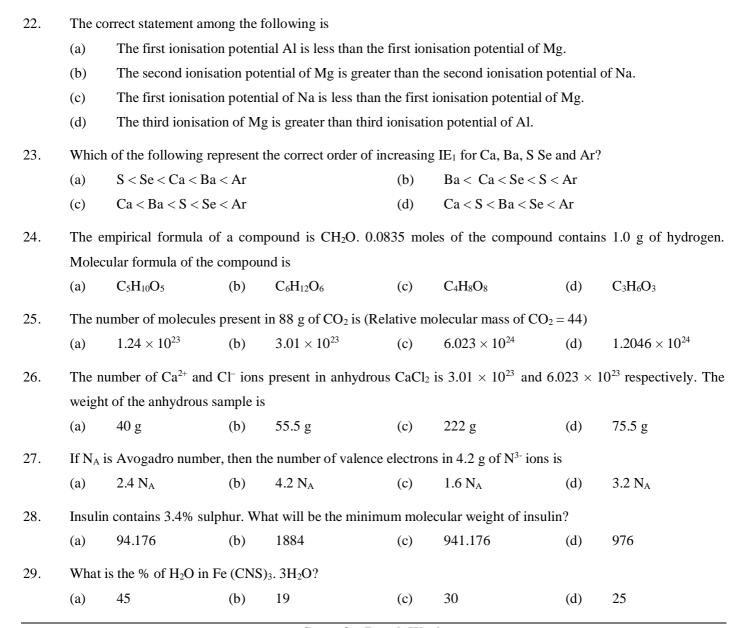
15. The formation of the oxide ion $O_{(g)}^{2-}$ requires first an exothermic and then an endothermic step as shown below:

$${\rm O_{(g)}} + {\rm e^-} \ \rightarrow \ O_{(g)}^- \ ; \ \Delta \ {\rm H} = \ -142 \ kJ/mol$$


$$O_{(g)} + e \rightarrow O_{(g)}^{2-}$$
; $\Delta H = 844 \text{ kJ/mol}$

This is because:

- (a) O⁻ ion has comparatively larger size than oxygen atom
- (b) Oxygen has high electron affinity
- (c) O⁻ ion will tend to resist the addition of another electron.
- (d) Oxygen is more electronegative.



- 21. The statement that is not correct for the periodic classification of elements is
 - The properties of elements are the periodic functions of their atomic numbers. (a)
 - Non-metallic elements are lesser in number than metallic elements. (b)
 - The first ionization energies of elements along a period do not vary in a regular manner with increases in (c) atomic number.
 - For transition elements the d-subshells are filled with electrons monotonically with increase in atomic (d) number.

30.		le percentage of C-1 arbon is	2 and C	-14 in nature is 98%	and 2%	respectively, then t	he numbe	r of C-14 atoms in 12
	(a)	1.2×10^{22}	(b)	3.01×10^{22}	(c)	5.88×10^{23}	(d)	6.02×10^{23}
31.	The v	apour density of gas	A is for	ur times that of B. If	molecula	ar mass of B is M, th	en molec	ular mass of A is
	(a)	M	(b)	4M	(c)	$\frac{M}{4}$	(d)	2M
32.	•	a hydrocarbon on ates the law of:	combus	stion in excess of o	xygen p	roduces 8.8 of CO	2 and 5.4	g of H ₂ O. The data
	(a)	conservation of m	nass		(b)	multiple proportion	ons	
	(c)	constant proportion	ons		(d)	none of these		
33.	2.76 g	g of silver carbonate	on being	g strongly heated yie	lds a resi	idue weighing.		
	$(Ag_2C$	$^{2}O_{3} \longrightarrow ^{2}Ag^{-1}$	+ CO ₂ +	$\frac{1}{2}$ O ₂)				
	(a)	2.16 g	(b)	2.48 g	(c)	2.32 g	(d)	2.64 g
34.	_	impure $CaCO_3$ on e. [At. wt.: $Ca = 40$;	_	•	as at STI	P. Find the percenta	ge of cal	cium in the limestone
	(a)	10	(b)	20	(c)	1	(d)	30
35.	_	grams mixture of Ca STP. Mass of CaCO			gives C	O ₂ . Volume of CO ₂	obtained	is measured to be 448
	(a)	0.5 gram	(b)	0.84 gram	(c)	0.92 gram	(d)	1.00 gram
36.	3 g of	Mg is burnt in a clo	sed vess	sel containing 3 g of	oxygen.	The weight of exces	s reactant	left is
	(a)	0.5 g of oxygen	(b)	1.0 g of oxygen	(c)	1.0 g of Mg	(d)	0.5 of Mg
37.	How 1	many moles of potas	ssium ch	lorate need to be hea	ted to pr	roduce 11.2 litres ox	ygen at N	TP?
	(a)	$\frac{1}{2}$ mol	(b)	$\frac{1}{3}$ mol	(c)	$\frac{1}{4}$ mol	(d)	$\frac{2}{3}$ mol

X is the limiting reagent

38.

(a)

	(b) (c)			and mass of X_2Y_3 f	formed is do	uble the mass of '	X' taken		
	(d)	none of these							
39.	For tl	ne reaction 2P + 0	$Q \rightarrow R, 8 \text{ n}$	nol of P and 5 mo	l of Q will p	roduce.			
	(a)	8 mol of R	(b)	5 mol of R	(c)	4 mol of R	(d)	13 mol of R	
40.	The r	mass of Mg ₃ N ₂ pr	oduced if 4	8 g of Mg metal	is reacted wi	th 34 g NH ₃ gas is	S		
	3 Mg	$+2NH_3 \rightarrow Mg_3I_3$	$N_2 + 3H_2$						
	(a)	200 3	(b)	$\frac{100}{3}$	(c)	$\frac{400}{3}$	(d)	$\frac{150}{3}$	
41.		e reaction 4A + 2 s of A, 1.2 moles		\rightarrow A ₄ B ₂ C ₃ what w .44 moles of C:	ill be the nu	mber of moles of	f product fo	rmed. Starting fro	om 2
	(a)	0.5	(b)	0.6	(c)	0.48	(d)	4.64	
42.	The r	nolarity of the so	olution cont	taining 2.8% (mas	ss/volume) s	olution of KOH i	s : Given at	omic mass of K =	= 39)
	(a)	0.1 M	(b)	0.5 M	(c)	0.2 M	(d)	1 M	
43.	The r	nole fraction of a	given sam	ple of I ₂ in C ₆ H ₆ i	s 0.2. The n	nolality of I ₂ in C ₆	₅ H is		
	(a)	0.32	(b)	3.2	(c)	0.032	(d)	0.48	
14.	Whic	h of the followin	g relations	is incorrect for so	lutions?				
	(a)	3 N Al ₂ (SO ₄) ₃	= 0.5 M A	$l_2(SO_4)_3$					
	(b)	$3 \text{ M H}_2\text{SO}_4 =$	6 N H ₂ SO ₄	Į.					
	(c)	$1 \text{ M H}_{3}PO_{4} =$	1/3 N H ₃ PC	O_4					
	(d)	1 M Al ₂ (SO ₄) ₃	$_3 = 6 \text{ N Al}_2$	$(SO_4)_3$					
45.		volume of water t M solution of HC		e added to a mixt	ure of 250 n	nl of 0.6 M HCl a	nd 750 ml o	f 0.2 M HCl to ol	btain
	(a)	750 ml	(b)	100 ml	(c)	200 ml	(d)	300ml	
				Space for	· Rough Wo	<u>rk</u>			

Equal weight of 'X' (At. wt. = 36) and 'Y' (At. wt. = 24) are reacted to form the compound X_2Y_3 . Then:

Date: 21-08-2022

NEET 24 MR BATCH BIOLOGY : PART TEST

Topics: Animal Tissue and Biological Classification

46.	Which of the following are found in extreme saline conditions?										
	(a)	Archaebacteria	(b)	Eubacteria	(c)	Cyanobacteria	(d)	Mycobacteria			
47.		h among the following the animals & can	•	•	ells, knov	vn without a definite	cell wal	l, pathogenic to plants			
	(a)	Bacillus	(b)	Pseudomonas	(c)	Mycoplasma	(d)	Nostoc			
48.	The p	orimitive prokaryotes	s respon	sible for the product	ion of bio	ogas from the dung of	f rumina	nt animals, include the			
	(a)	Thermoacidophil	es		(b)	Methanogens					
	(c)	Eubacteria			(d)	Halophiles					
49.	Metha	anogens belong to									
	(a)	Eubacteria	(b)	Archaebacteria	(c)	Dinoflagellates	(d)	Slime molds			
50.	Chro	matophores take par	t in								
	(a)	Photosynthesis	(b)	Growth	(c)	Movement	(d)	Respiration			
51.	The s	tructure that helps so	ome bac	eteria to attach to rock	ks &/or h	ost tissues are					
	(a)	Rhizoids	(b)	Fimbriae	(c)	Mesosomes	(d)	Holdfast			
52.	Archaebacteria differ from eubacteria in										
	(a)	Cell membrane st	tructure		(b)	Mode of nutrition					
	(c)	Cell shape			(d)	Mode of reproduc	tion				
53.	Pigmo	ent-containing mem	branous	extensions in some	cyanobac	eteria are					
	(a)	Heterocysts	(b)	Basal bodies	(c)	Pneumatophores	(d)	Chromatophores			
54.	Whic	h of the following a	re likely	to be present in deep	p sea wat	er?					
	(a)	Archaebacteria	(b)	Eubacteria	(c)	Blue-green algae	(d)	Saprophytic fungi			
55.	The c	yanobacteria are als	o referro	ed to as							
	(a)	Protists	(b)	Golden algae	(c)	Slime moulds	(d)	Blue-green algae			
56.	Nuclear membrane is absent in										
	(a)	Penicillium	(b)	Agaricus	(c)	Volvox	(d)	Nostoc			

57.	Maximum nutritional diversity is found in the group												
	(a)	Fungi	(b)	Animalia	(c)	Monera	(d)	Plantae					
58.	Orgai	nisms called metha	nogens ar	e most abundant in a	a								
	(a)	Cattle yard	(b)	Polluted stream	(c)	Hot spring	(d)	Sulfur rock					
59.	Some	hyperthermophili	c organisn	ns that grow in high	ly acidic l	nabitats belong to	the two gro	oups called					
	(a)	Eubacteria & an	chaea		(b)	Cyanobacteria &	& diatoms						
	(c)	Protists & moss	ses		(d)	Liverworts & ye	easts						
60.	Therr (a) (b) (c)	Archaebacteria Archaebacteria supercoiled	that conta that lack a	•	ous to euk ling those	aryotic core histore found in eukaryo	tes but who	ose DNA is negatively toskeleton as well as					
	(d)												
61.	Bacte	erial leaf blight of 1	rice is caus	sed by a species of									
	(a)	Xanthomonas	(b)	Pseudomonas	(c)	Alternaria	(d)	Erwinia					
52.	Which one of the following statements about Mycoplasma is wrong?												
	(a)	They are also ca	alled PPL0)	(b)	They are pleom	orphic						
	(c)	They are sensiti	ve to peni	cillin	(d)	They cause disease in plants							
63.	Chromosomes in a bacterial cell can be 1-3 in number &												
	(a)	Can be circular	as well as	linear within the sa	me cell								
	(b)	Are always circ	ular										
	(c)	Are always line	ar										
	(d)	Can be either ci	rcular or l	inear, but never botl	h within t	he same cell							
64.	Orgai	nism which obtain	s energy b	y the oxidation of re	educed in	organic compound	are called						
	(a)	Homoautotroph	IS		(b)	Chemoautotrophs							
	(c)	Saprozoic			(d)	Coproheterotrop	ohs						
65.	What	is true for cyanob	acteria?										
	(a)	Oxygenic with nitrogenase				Oxygenic without nitrogenase							
	(c)	Non-oxygenic v	with nitrog	enase	(d)	Non-oxygenic without nitrogenase							

66.	What is true for photolithotrophs?											
	(a)	Obtain energy from	m radiat	tions & hydrogen from	n organi	c compounds						
	(b)	Obtain energy from	m radiat	tions & hydrogen from	n inorga	nic compounds						
	(c)	Obtain energy from	m organ	ic compounds								
	(d)	Obtain energy from	m inorg	anic compounds								
67.	A few	organisms are know	vn to gro	ow & multiply at temp	erature	s of 100-105° C. Ti	hey belong	; to				
	(a)	Marine archaebac	teria		(b)	Thermophilic sul	lphur bacte	eria				
	(c)	Hot-spring blue-g	reen alg	ae (cyanobacteria)	(d)	Thermophilic, su	baerial fun	ıgi				
68.	The m	nain role of bacteria	in the ca	arbon cycle involves								
	(a)	Photosynthesis			(b)	Chemosynthesis						
	(c)	Digestion or break	kdown o	f organic compounds	(d)	Assimilation of r	nitrogenous	s compounds				
69.	The he	ereditary material pr	esent in	the bacterium Escheri	ichia co	li is						
	(a)	Single-stranded DNA				Deoxyribose sug	ar					
	(c)	Double stranded I	ONA		(d)	Single stranded I	RNA					
70.	In bac	terial chromosomes	, the nuc	eleic acid polymers are	e							
	(a)	Linear DNA mole	cule		(b)	Circular DNA m	olecule					
	(c)	Of two types- DN	A & RN	IA	(d)	Linear RNA mol	ecule					
71.	Chrys	ophytes, euglenoids,	, dinofla	gellates & slime moul	ds are i	ncluded in the king	gdom					
	(a)	Protista	(b)	Fungi	(c)	Animalia	(d)	Monera				
72.	Select	the wrong statemen	t									
	(a)	The walls of diato	ms are	easily destructible								
	(b)	'Diatomaceous ea	rth' is fo	ormed by the cell wall	s of dia	toms						
	(c)	Diatoms are chief	produce	ers in the oceans								
	(d)	Diatoms are micro	oscopic	& float passively in w	ater							
73.	Pick u	p the wrong stateme	ent.									
	(a)	Cell wall is absent	t in Aniı	malia								
	(b)	Protista have phot	osynthe	tic & heterotrophic me	odes of	nutrition						
	(c)	Some fungi are ed	lible									
	(d)	Nuclear membran	e is pres	sent in Monera								

74.	In which group of organisms the cell walls form two thin overlapping shells which fit together?											
	(a)	Chrysophytes	(b)	Euglenoids	(c)	Dinoflagellates	(d)	Slime moulds				
75.	What	is common about T	rypanos	oma, Noctiluca, Mor	nocystis &	z Giardia?						
	(a)	These are all unio	cellular p	protists	(b)	They have flagella	L					
	(c)	They produce spo	ores		(d)	These are all paras	sites					
76.	Auxos	spores & homocysts	s are form	med respectively by								
	(a)	Several diatoms	& a few	cyanobacteria	(b)	Several cyanobact	eria & se	everal diatoms				
	(c)	Some diatoms &	several o	cyanobacteria	(d)	Some cyanobacteria & many diatoms						
77.		a fresh water prote le will	ozoan po	ossessing a contracti	ile vacuol	e is placed in a glas	s contair	ning marine water, the				
	(a)	Increase in numb	er		(b)	Disappear						
	(c)	Increase in size			(d)	Decrease in size						
78.	The cl	hief advantage of er	ncystmer	nt to an Amoeba is								
	(a)	The chance to ge	t rid of a	ccumulated waste pr	roducts							
	(b)	(b) The ability to survive during adverse physical conditions										
	(c)	The ability to live	e for son	ne time without inge	sting food	I						
	(d)	Protection from p	arasites	& predators								
79.	Extrar	nuclear inheritance	occurs in	1								
	(a)	Killer strain in Pa	arameciu	m	(b)	Colour blindness						
	(c)	Phenylketonuria			(d)	Tay Sachs disease						
80.	Which	n of the following o	rganisms	s possesses character	ristics of l	ooth a plant & an ani	mal?					
	(a)	Bacteria	(b)	Mycoplasma	(c)	Euglena	(d)	Paramecium				
31.	Macro	& micronucleus ar	re the ch	aracteristic features	of							
	(a)	Paramecium & V	orticella		(b)	Opelina & Nictothirus						
	(c)	Hydra & Ballanti	dium		(d)	Vorticella & Nicto	thirus					
32.	Excretion in Amoeba occurs through											
	(a)	Lobopodia	(b)	Uroid portion	(c)	Plasma membrane	(d)	Contractile vacuole				

83.	Protistan genome has											
	(a)	Membrane bour	nd nucleo	proteins embedded i	n cytopla	sm						
	(b)	Free nucleic aci	d aggrega	ntes								
	(c)	Gene containing	g nucleop	roteins condensed to	gether in	a loose mass						
	(d)	Nucleoprotein is	n direct c	ontact with cell subs	tance							
84.	Entar	noeba coli causes										
	(a)	Pyorrhoea	(b)	Diarrhoea	(c)	Dysentery	(d)	None of these				
85.	Protis	sts obtain food as										
	(a)	Photosynthesise	ers, symbi	onts & holotrophs	(b)	Photosynthesiser	:S					
	(c)	Chemosynthesis	sers		(d)	Holotrophs						
86.	If all	ponds & puddles a	re destro	yed, the organism lik	ely to be	destroyed is						
	(a)	Leishmania	(b)	Trypanosoma	(c)	Ascaris	(d)	Plasmodium				
87.	The p	oart of life cycle of	malarial	parasite Plasmodium	n vivax, tl	nat is passed in fema	ale Anoph	eles is				
	(a)	Sexual cycle			(b)	Pre-erythrocytic	schisogon	y				
	(c)	Exo-erythrocyti	c schisog	ony	(d)	Post-erythrocytic	e schisogo	ny				
88.	Africa	an sleeping sicknes	ss is due t	О								
	(a)	Plasmodium vivax transmitted by tse-tse fly										
	(b)	Trypanosoma lewsii transmitted by bed-bug										
	(c)	(c) Trypanosoma gambiense transmitted by Glossina palpalis										
	(d)	Entamoeba ging	givalis spı	read by a house fly								
89.	In An	noeba & Paramecio	um osmoi	regulation occurs thr	ough							
	(a)	Pseudopodia			(b)	Nucleus						
	(c)	Contractile vacu	ıole		(d)	General surface						
90.	Who	discovered Plasmo	dium in I	RBCs of human bein	gs?							
	(a)	Ronald Ross	(b)	Mendel	(c)	Laveran	(d)	Stephen				
91.		• • •		nties got involved in least likely to be rep	•		e and deat	h of a few cells t	fo the			
	(a)	Neurons			(b)	Liver cells						
	(c)	Osteocytes			(d)	Malpighian layer	r of skin					

92.	Nerve cells do not divide because they do not have:											
	(a)	Nucleus	(b)	Golgi body	(c)	Centrosome	(d)	Mitochondria				
93.	Inter-	articulated disc is fo	und in:									
	(a)	Muscles of arms	(b)	Vertebrae	(c)	Muscles of legs	(d)	Public symphysis				
94.	Thou	sands of years old m	ummies	are still in their cond	lition as	they before due to no	on-destruc	ction of				
	(a)	Yellow elastin fib	ores		(b)	White elastin fibre	es					
	(c)	Collagen fibres			(d)	Veins						
95.	Exosl	keleton is absent in:										
	(a)	Scoliodon	(b)	Frog	(c)	Rabbit	(d)	Fowl				
96.	Node	s of Ranvier are four	nd in:									
	(a)	Myelinated nerve	fibre		(b)	Non-myelinated n	erve fibre)				
	(c)	Both of these			(d)	None of these						
97.	Nissl'	's granules are presen	nt in:									
	(a)	Muscle cells	(b)	Liver cells	(c)	Nerve cells	(d)	Adrenal gland				
98.	Whic	h set clearly indicate	striated	l muscles?								
	(a)	Cylindrical, stripe	ed and n	ucleated	(b)	Cylindrical, stripe	d and bra	nched				
	(c)	Cylindrical, synci	tial and	unbranched	(d)	Spindle, unbranched and uninucleated						
99.	Nerve	e cells do not posses:	:									
	(a)	Dendrite	(b)	Axon	(c)	Neurilemma	(d)	Sarcolemma				
100.	Fat is	present in which pa	rt of a n	euron?								
	(a)	Axon	(b)	Dendron	(c)	Cyton	(d)	Node of Ranvier				
101.	The c	amel's hump consist	ts of:									
	(a)	Skeletal tissue	(b)	Muscular tissue	(c)	Areolar tissue	(d)	Adipose tissue				
102.	The c	condition in which a	number	of nuclei are present	in a mu	scle fibre is called:						
	(a)	Coenocytic	(b)	Syncitial	(c)	Polykaryon	(d)	Endoduplication				
103.	Pseud	lostratified epitheliu	m lines:									
	(a)	Endothelium			(b)	Urinary bladder						
	(c)	Urethra & oviduc	t		(d)	Trachea & respira	tory tract					

104.	Sarcomere is a segment of striated muscle fibre between:											
	(a)	M-lines	(b)	Z-lines	(c)	H-zones	(d)	I-bands				
105.	Interve	ertebral disc consists	s of a sh	ock absorber connect	ive tissu	e known as:						
	(a)	Hyaline cartilage	(b)	Elastic cartilage	(c)	Fibro-cartilage	(d)	Reticulo-cartilage				
106.	Vagina	a, oesophagus and u	rethra co	ontain which type of	tissue?							
	(a)	Ciliated epitheliur	n		(b)	Columnar epitheliu	ım					
	(c)	Simple squamous	epitheli	um	(d)	Stratified squamou	s epithel	ium				
107.	Interve	ertebral discs are ma	ide of:									
	(a)	Hyaline cartilage			(b)	Calcified cartilage						
	(c)	Fibro-cartilage			(d)	Elastic cartilage						
108.	Areola	ar connective tissue j	joins:									
	(a)	Fat body with mus	scles		(b)	Integument with m	uscles					
	(c)	Bone with muscle	s		(d)	Bones with bones						
109.	Mast	cells secrete:										
	(a)	Heparin	(b)	Myoglobin	(c)	Histamine	(d)	Haemoglobin				
110.	Tendo	ons and ligaments are	e special	lized types of:								
	(a)	Nervous tissue			(b)	Muscular tissue						
	(c)	Epithelial tissue			(d)	Fibrous connective	tissue					
111.	The ty		lls which	h line the inner surf	ace of fa	allopian tubes, brond	chioles a	and small bronchi are				
	(a)	Squamous epitheli	ium		(b)	Columnar epitheliu	ım					
	(c)	Ciliated epitheliur	n		(d)	Cuboidal epitheliu	m					
112.	Which	one of the followin	g paris o	of structures distingui	ishes a n	erve cell from other t	types of	cells?				
	(a)	Nucleus and mitod	chondria	ı	(b)	Vacuoles and fibre	es					
	(c)	Perikaryon and de	ndrites		(d)	Flagellum and med	dullary sl	neath				
113.	Striped muscle fibre has:											
	(a)	One nucleus	(b)	Two nuclei	(c)	Many nuclei	(d)	No nucleus				

114.	Bipolar neurons occur in:										
	1.	Retina of eye			2.	Olfactory epitheliu	m				
	3.	Inner ear			4.	Brain					
	(a)	1, 2 and 3 are cor	rect		(b)	1 and 2 are correct					
	(c)	2 and 4 are correct	et		(d)	1 and 3 are correct					
115.	Cardia	ac muscles are:									
	1.	Striated	2.	Voluntary	3.	Involuntary	4.	Non-striated			
	(a)	1, 2 and 3 are cor	rect		(b)	1 and 2 are correct					
	(c)	2 and 4 are correct	et		(d)	1 and 3 are correct					
116.	The li	ning of intestine and	d kidney	rs in humans is:							
	(a)	Keratinized	(b)	Brush border	(c)	Ciliated	(d)	None of these			
117.	Exam	ple of embryonic co	onnective	e tissue is:							
	(a)	Wolman jelly	(b)	Wharton's jelly	(c)	Wright's jelly	(d)	None of these			
118.	Chang	ges that allow the co	nversio	n of larva into adult,	is called:						
	(a)	Metagenesis	(b)	Alternation	(c)	Metamorphosis	(d)	Metastasis			
119.	Which	n of the following is	a transp	parent tissue?							
	(a)	Tendon	(b)	Fibro-cartilage	(c)	Hyaline cartilage	(d)	All of these			
120.	Nerve	cells do not divide	because	they do not have:							
	(a)	Nucleus	(b)	Centrosome	(c)	Golgi bodies	(d)	Mitochondira			
121.	Ligan	nent is mainly made	up of:								
	(a)	Reticulin	(b)	Elastin	(c)	Myosin	(d)	Colalgen			
122.	Conne	ection between axor	n and dea	ndrite is:							
	(a)	Synapsis	(b)	Synapse	(c)	Desmosome	(d)	Tight junction			
123.	In a m	nyelinated neuron, t	wo adjac	cent myelin sheaths a	re separa	nted by gaps called:					
	(a)	Nodes of Ranvier	ſ		(b)	Synaptic cleft					
	(c)	Schwann cells			(d)	Synaptic knob					
124.	Name	the type of tissue w	which for	rms glands:							
	(a)	Muscular	(b)	Epithelial	(c)	Squamous	(d)	Cuboidal			

125.	Endothelium of blood vessels is made up of:									
	(a)	Simple cuboidal e	pitheliur	n	(b)	Simple squamous e	pitheliur	n		
	(c)	Sampel columnar	epitheliu	ım	(d)	Simple non-ciliated	column	ar epithelium		
126.	The ep	oithelial tissue presen	nt on the	e inner surface of broi	nchioles	and fallopian tubes is	s:			
	(a)	Cuboidal	(b)	Glandular	(c)	Ciliated	(d)	Squamous		
127.	Which	one of the followin	g is corr	ect pairing of the boo	ly part a	nd kind of muscle tiss	sue that 1	moves it?		
	(a)	(a) Heart wall – Involuntary unstriated muscles				Biceps of upper arm – Smooth muscle fibres				
	(c)	Abdominal wall – Smooth muscle				Iris – Involuntary smooth muscle				
128.	The cell junctions like tight junctions, desmosomes and gap junctions are found in:									
	(a)	Muscular tissue				Connective tissue				
	(c)	Epithelial tissue			(d)	Neural tissue				
129.	The kind of tissue that forms supportive structure in our pinna of external ear, is also found in:									
	(a)	Vertebrae	(b)	Nails	(c)	Ear ossicles	(d)	Tip of the nose		
130.	Dark b	ands are:								
	(a)	A-bands	(b)	B-bands	(c)	t-bands	(d)	z-lines		
131.	Havers	sian lamellae are the	structui	res found in:						
	(a)	Hyaline cartilage	(b)	Fibrous cartilage	(c)	Bone	(d)	Myelin sheath		
132.	The la	of the	cells extend from the							
	(a)	Simple columnar epithelium				Pseudostratified epithelium				
	(c)	Stratified columnar epithelium				Stratified cuboidal epithelium				
133.	Epimy	sium, perimysium a	nd endo	mysium are found in	:					
	(a)	Nerve	(b)	Blood vessel	(c)	Striated muscles	(d)	Uterus		
134.	Tendo	Γendons and ligaments are kind of:								
	(a)	Muscular tissue	(b)	Connective tissue	(c)	Epithelial tissue	(d)	Nervous tissue		
135.	Myelir	sheath is formed b	y:							
	(a)	Ranvier cell	(b)	Muscle cell	(c)	Schwann cell	(d)	Axon		

Max Marks: 540 Date: 21.08.2022

NEET 24 MR BATCH CHEMISTRY: PART TEST ANSWER KEY

Topic: Periodic + Mole Concept

1.	(d)	2.	(c)	3.	(b)	4.	(b)	5.	(b)
6.	(c)	7.	(d)	8.	(b)	9.	(a)	10.	(a)
11.	(c)	12.	(a)	13.	(d)	14.	(d)	15.	(c)
16.	(b)	17.	(c)	18.	(c)	19.	(a)	20.	(a)
21.	(d)	22.	(b)	23.	(b)	24.	(b)	25.	(d)
26.	(b)	27.	(a)	28.	(c)	29.	(b)	30.	(a)
31.	(b)	32.	(a)	33.	(a)	34.	(a)	35.	(d)
36.	(b)	37.	(b)	38.	(c)	39.	(c)	40.	(a)
41.	(c)	42.	(b)	43.	(b)	44.	(c)	45.	(c)

Date: 21-08-2022

NEET 24 MR BATCH BIOLOGY : PART TEST ANSWER KEY

Topics: Animal Tissue and Biological Classification

46.	(a)	47.	(c)	48.	(b)	49.	(b)	50.	(a)
51.	(b)	52.	(a)	53.	(d)	54.	(a)	55.	(d)
56.	(d)	57.	(c)	58.	(a)	59.	(a)	60.	(a)
61.	(a)	62.	(c)	63.	(d)	64.	(b)	65.	(a)
66.	(b)	67.	(a)	68.	(c)	69.	(c)	70.	(b)
71.	(a)	72.	(a)	73.	(d)	74.	(a)	75.	(a)
76.	(a)	77.	(b)	78.	(b)	79.	(a)	80.	(c)
81.	(a)	82.	(d)	83.	(a)	84.	(d)	85.	(a)
86.	(d)	87.	(a)	88.	(c)	89.	(c)	90.	(c)
91.	(a)	92.	(c)	93.	(b)	94.	(c)	95.	(b)
96.	(a)	97.	(c)	98.	(c)	99.	(d)	100.	(a)
101.	(d)	102.	(b)	103.	(d)	104.	(b)	105.	(c)
106.	(d)	107.	(c)	108.	(b)	109.	(a)	110.	(d)
111.	(c)	112.	(c)	113.	(c)	114.	(a)	115.	(d)
116.	(b)	117.	(b)	118.	(c)	119.	(c)	120.	(b)
121.	(b)	122.	(b)	123.	(a)	124.	(b)	125.	(b)
126.	(c)	127.	(d)	128.	(c)	129.	(d)	130.	(a)
131.	(c)	132.	(b)	133.	(c)	134.	(b)	135.	(c)